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For my talk...

1. How are we incorporating agent-based modeling (ABM),
ethnographic, & survey research?

2. How are we applying this combination to the opioid
epidemic in Ohio? (work-in-progress)

« Opioid demand forecasting
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Mike Agar
Connected with Mike... (Nov. 17th, 1993, AAA Washington DC)

My informal mentor on...

@ Doing ethnography to understand: lllegal drug use, drug
trends — epidemics, drug distribution

= Using Agent-Based Modeling to understand the above

@ Drug policy, academia & life in general... (tacos & Jamo)
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Mike Agar

« 2008 SfAA workshop — social complexity & ABM (Santa Fe)

« “Agent Based Modeling” (ABM) may sound like a fashion
show put on by the Drug Enforcement Administration. It is
not. It is a useful new tool, a computer-based thought-
experiment lab for the relationship between structure and
agency, a device to explore ethnographic conclusions and
visually display them in a powerful and accessible way.

(Agar 2008, SfAA abstract)
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Mike Agar

“His is a thought experiment.”

How can we apply ABM & what is required to do this?

(lots of conversation with Mike about this)
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Mike Agar — Algorithmic complexity

* In comparing Complex Adaptive Systems (CAS) &
ethnography:

“An algorithm is just a set of procedures for doing
something. So, one measures algorithmic complexity by
answering a question: “Is there an algorithm to produce the
expression of interest that is simpler than the expression
itself? How much simpler is it?” (Agar 2004: 18)
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Mike Agar — Algorithmic complexity

Process (method) & product

Not complex Very complex

of algorithmic complexity

Paint by Jackson Pollock

numbers (1912 — 1956)
Experiments  Social Science Ethnography CAS

|dentifying places in our ethnography to make things “simpler?” — targets for ABM
(lots of conversation with Mike about this)
Y
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Algorithmic complexity

FROM THIS... ...TO THIS

The “ethnography”

The “real world”
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Algorithmic complexity

FROM THIS...

The “real world”
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...TO THIS
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« The problem: The opioid epidemic in Ohio

(increased demand)
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Map Information:

This map represents the percentage
of clients in treatment with an opiate-

related diagnosis (heroin and
prescription opioid). The highest
concentrations of opiate admissions
are in Cuyahoga (14.3%),
Montgomery (12.5%), Mahoning
(12.2%), Summit (12.1%) and
Franklin (10.1%) counites. Noble,
Paulding, Putnam and Wyandot did
not have any opiate-related
admissions.

Data Source:

Data from Multi Agency Community
Information Systems (MACSIS)
Map produced April 2013

Client Admissions for Opiate Abuse and Dependence
Ohio MACSIS Data - 2001
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Legend

Opiate Addicts (%)
[ 10.0% -3.0%
N 3.1% -6.7%
[ 16.8%-16.3%

Map Information:

This map represents the percentage
of clients in treatment with an opiate-
related diagnosis (heroin and
prescription opioid). The highest
concentrations for opiate admissions
are in Cuyahoga (16.3%), Mahoning
(15.8%) and Montgomery (14.9%)
counties. Paulding, Putham and
Wyandot did not have any opiate-
related admissions.

Data Source:

Data from Multi Agency Community
Information Systems (MACSIS)
Map produced April 2013

Client Admissions for Opiate Abuse and Dependence
Ohio MACSIS Data - 2003
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Legend

Opiate Addicts (%)
[ 11.0% -3.0%
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[ 16.8% -34.4%

Map Information:

This map represents the percentage
of clients in treatment with an opiate-
related diagnosis (heroin and
prescription opioid). The highest
concentrations for opiate admissions
are in Scioto (34.4%), Clark (21.1%)
and Jackson (20.9%) counties. The
counties with the lowest
concentrations of an opiate-related
diagnosis are Holmes (1.0%),
Morgan (1.0%) and Henry (1.1%).

Data Source:

Data from Multi Agency Community
Information Systems (MACSIS)
Map produced April 2013

Client Admissions for Opiate Abuse and Dependence
Ohio MACSIS Data - 2005
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Legend

Opiate Addicts (%)
[ 10.0% -3.0%
N 3.1% -6.7%
[ 16.8% -31.4%

Map Information:

This map represents the percentage
of clients in treatment with an opiate-
related diagnosis (heroin and
prescription opioid). The highest
concentrations for opiate admissions
are in Jackson (31.4%), Scioto
(30.8%) and Lawrence (22.7%)
counties. The counties with the
lowest concentrations of an opiate-
related diagnosis are Putnam (0.0%),
Coshocton (1.9%) and Holmes
(2.0%).

Data Source:

Data from Multi Agency Community
Information Systems (MACSIS)
Map produced April 2013

Client Admissions for Opiate Abuse and Dependence
Ohio MACSIS Data - 2007
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Legend
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Map Information:

This map represents the percentage
of clients in treatment with an opiate-

related diagnosis (heroin and

prescription opioid). The highest
concentrations for opiate admissions
are in Scioto (64.1%), Lawrence

(49.5%) and Jackson (35.7%)

counties. The counties with the
lowest concentrations of an opiate-
related diagnosis are Allen (2.3%),

Coshocton (2.4%) and Carroll
(3.5%).

Data Source:

Data from Multi Agency Community
Information Systems (MACSIS)
Map produced April 2013

Client Admissions for Opiate Abuse and Dependence
Ohio MACSIS Data - 2009
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Client Admissions for Opiate Abuse and Dependence
Ohio MACSIS Data - 2011
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 The ABM target behavior

(2014)
NSF study of exchange in

the heroin market
Cleveland




Heroin Market Transactions

Dealer Customer 1
IE '.I

v The conventional understanding

v Only accounts for approx. 1/3 of all sales’2
o Dealers desire to remain hidden

[1] Needle, H.R., Mills, A.R.: Drug Procurement Practices of the Out-of-Treatment Chronic Drug Abuser, National Institute on Drug Abuse,
NIH Publication No. 94-3820 (1994)

[2] Johnson, B.D., Goldstein, P.J., Preble, E. et al.: Taking Care of Business: The Economics of Crime by Heroin Abusers, Lexington
Books, Lexington, MA (1985)
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Heroin Market Transactions

Customer 1
[

Market w
Barriers

v" How does a neophyte heroin user buy the drug?

v" How do they...

|ldentify a heroin seller?

Communicate interest in buying heroin?

Avoid arrest?

Avoid “bogus innovations?”

Avoid being ripped-off? What's the true market price?
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Heroin Market Transactions

L/ v
Dealer Customer 2 Customer 1
Has dealer No dealer
“Broker”

v Users (initially) acquire heroin through fellow users & not dealers
v’ Brokered transactions are common (a.k.a. “copping drugs for others”)
« Recognized in the literature since the 1960’s'-3

[1] Preble, E. & Casey, J. (1969). Taking Care of Business: The Heroin User's Life on the Street. International Journal of the Addictions 4(1) 1-24.
[2] Johnson, B. D., Goldstein, P. J., Preble, E., Schmeidler, J., Lipton, D. S., Sprunt, B., & Miller, T., (1985). Taking Care of Business: The
Economics of Crime by Heroin Abusers. Lexington, MA: Lexington Books.

[3] Goldstein, P. J. (1981). Getting Over: Economic Alternatives to Predatory Crime Among Street Drug Users. In Inciardi, J. A. (ed.) The Drug-
Crime Connection (pp. 67-84). Beverly Hills, CA: Sage Publications.
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Heroin Market Transactions

o e -
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*s._Has dealer No dealer .-
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r conflates a dealer & a peer’-2

equences
3. Psychosocial cons

Too much
algorithmic
complexity

[1] Hoffer L. (2016) The Space Between Community and Self-Interest: Conflict and the Experience of Exchange in Heroin Markets. The Economics
of Ecology, Exchange, and Adaptation: Anthropological Explorations Research in Economic Anthropology. (36) 167-196

[2] Hoffer L. (2017) The Fuzzy Boundaries of lllegal Drug Markets and Why They Matter. (In) Pickard H., Ahmed S. (Eds.): The Routledge
Handbook of Philosophy and Science of Addiction. Taylor & Francis. (Forthcoming)
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« Data collection to inform ABM parameters

(2016)

NIH survey on drug access
Cleveland




Drug Acquisition — Broker transactions

Have you ever been given money to buy drugs for someone else?

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Yes (Lifetime) Yes (Last 30 Days)

N=158




Drug Acquisition — Broker transactions (Range)

In the last 30 days, how many different people have you bought for?

32%, 4 or more

----------------------------------------

8% 8% ﬂ
5%

N=158
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The ABM:
Opioid Demand




Demand ABM

Step 2
Dealer Customer 2 Customer 1
rk Y Coh | w amca— rn\ P—— Increase demand
Has dealer No dealer
“Broker”
Step 3
Step 1
Dealer Customer 1 Dealer Customer 2 Customer 1
Has dealer No dealer

“Broker”

v’ Delineate the ratio between direct vs. brokered transactions for
different demand conditions (e.g., +20%)
v’ Step 4: Identify this ratio among users to indicate level of demand

COLLEGE OF

ARTS AND SCIENCES

CASE WESTERN RESERVE
UNIVERSITY




Demand ABM

o [ ] NetLogo — drug_model6.0.1_V.3 {/Users/lee_hoffer_office/Box Sync/NIH_Trends Grant/Demand Sim}

_ Info  Code

normal speed
P view updates

|
o8 ¥ e | O oy | [seings.
Edit Delete Add on ticks

ticks: 174015

ﬁﬁ Heroin Dealer agents Consumer agents
size_of_market 50 79.2 836
[ — "
percentDealer 10 g g
3 =
[ a £
allow_direct_connection 10 #* ;
I 0 0
dealer_leave_rate 2 (%) 0 Days 4260 0 Days 4260
[ Drug selling price by dealer agents Consumers without drugs
’ c _leave_rate 19 (%) 603 — =average 100
max
c _network i o B min §
Preferential Attachment Vl = §
i s
& &
N —— VI I
new_consumer 4 (% increase) 0 0
0 4260 0 4290 .
—(— == k
franchise_limit 40 (c s) Brokered for someone D eReraalalE B rO e rl n g
= 100 M # brok
[ —— i
tolerance_limit 5 (any deals) o ° /—\L B # direct
g g
—— g g
o
refil_frequency 14 (days) ’ setup | ‘ go .,.I ‘ step (day) ..I ’ stop E f;‘ VoS
L "~ o o
On
lioff new_dealers? Day Month
3625 120 (last 30 days) 145 0 Days

v’ In progress: issues with the “agent” algorithms
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The Implementation:
Ohio SEP Data Network




The Project

e (2015 — Present) Developing a statewide system to monitor syringe exchange
activity using REDCap — web-based survey platform
» Standardize data collection of client information (for comparisons)

lﬁ ’q Cleveland
e Utilize this system for:
Sept. 2017
1. Program decision-making N=1,623

2. Monitoring drug use dynamics

(Futu r‘e) . Columbus
1. Collect data on drug use behaviors

(direct vs. brokered transaction ratios)

Cincinnati

Portsmouth

Mar. 2018
N=292
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Conclusion

* Impossible to communicate all the ways Mike has
influenced my work (ABM & ethnography)

« Mike’s discussion of “algorithmic complexity”
helped me identify the relationship between CAS
(ABM) & ethnography... for application




Conclusion

Foreword by Mike Agar (3 pages)

: Junkie Business: The Evolution and
Operation of a Heroin Dealing Network
Lee D. Hoffer

 “Lee Hoffer has written three books at
once.”

* “In the third reading of this same book, he
extends the new complexity science to
economic markets and organizational
behavior.”

* (lllegal drug markets) “There is no ‘boss of
all bosses’ directing traffic. It happens
spontaneously, on the ground, from the
bottom up. Drug distribution is a colony of
amoebas, not a marching band.”

(Thomson Wadsworth, 2006)
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